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Permeable and non-reflecting boundary conditions in SPH
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SUMMARY

Inflow and outflow boundary conditions are essential for the application of computational fluid dynamics
to many engineering scenarios. In this paper we present a new boundary condition implementation
that enables the simulation of flow through permeable boundaries in the Lagrangian mesh-free method,
smoothed particle hydrodynamics (SPH). Each permeable boundary is associated with an inflow or outflow
zone outside the domain, in which particles are created or removed as required. The analytic boundary
condition is applied by prescribing the appropriate variables for particles in an inflow or outflow zone,
and extrapolating other variables from within the domain. Characteristic-based non-reflecting boundary
conditions, described in the literature for mesh-based methods, can be implemented within this framework.
Results are presented for simple one-dimensional flows, quasi-one-dimensional compressible nozzle flow,
and two-dimensional flow around a cylinder at Reynolds numbers of 40 and 100 and a Mach number of
0.1. These results establish the capability of SPH to model flows through open domains, opening a broad
new class of applications. Copyright q 2008 John Wiley & Sons, Ltd.
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1. INTRODUCTION

In many important questions in engineering fluid dynamics, the flow field extends over a very large
spatial domain, but the phenomena of interest are restricted to a relatively small region. Examples
include turbomachinery, pipes and channels, blood flow and external flows (where the local flow
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is governed by conditions in a practically infinite ‘free stream’). These problems can be simulated
successfully if the computational model is restricted to a small domain of interest, with boundary
conditions that provide reasonable models for the interaction of fluid in the domain with fluid
in the exterior. In particular, boundary conditions must allow fluid to enter and leave the local
computational domain. This approach is well established in Eulerian mesh-based methods.

Mesh-free Lagrangian methods such as smoothed particle hydrodynamics (SPH) have some
advantages over conventional methods, particularly in complex flows involving free surfaces and
moving bodies. Oger et al. [1] and Kajtar and Monaghan [2] give recent examples. However,
Lagrangian methods are at a disadvantage in the treatment of permeable boundary conditions. The
Eulerian frame of reference naturally describes a stationary spatial region with inflow and outflow
of fluid, while the Lagrangian reference frame follows fluid particles that may spend only a short
time traversing the spatial region of interest. Flow into and out of a domain can be modelled in
SPH with spatial periodicity, but this is accurate only for very special cases, and its use even as an
approximation is severely restricted. Furthermore, periodic boundaries cause particle distributions
to be recycled through the domain, so that a perturbed particle distribution may degrade without
limit over time. While SPH has been successful in the modelling of unbounded (e.g. astrophysical)
processes and wall-bounded unsteady flows (e.g. dam-break and wavemaker flows), it has not been
widely used for problems with inflow and outflow. To extend the scope of SPH to a wider range
of engineering flows, it is essential to incorporate inflow and outflow boundaries.

This paper presents a method for accurate implementation of inflow and outflow boundaries in
SPH. The method incorporates a framework for the insertion of new particles at an inflow boundary
and the removal of particles at an outflow boundary, while ensuring that appropriate mathematical
boundary conditions are enforced. Following some background material in Sections 2 and 3, this
framework is described in Section 4, and results are shown for a simple 1D wave propagation
problem. In Section 5, a non-reflecting boundary condition due to Giles [3] is described, and its
implementation in the new SPH framework is shown. In Section 6, results are presented for the
new boundary conditions for compressible flow through a quasi-one-dimensional nozzle and for
flow around a cylinder at Reynolds numbers of 40 and 100.

2. SPH DISCRETIZATION

The SPH method has been reviewed in detail by Monaghan [4] and others. SPH is based on
gradient approximations of the form

∇F(x)|x=xa ≈−∑
b
F(xb)∇W (x−xa,h)|x=xb

mb

�b
(1)

where F(x) is a field, xa is the location of interest, m is particle mass, � is density, W (r,h) is the
kernel function and h is the smoothing length. In most implementations, W has compact support
and h is defined such that the support radius is kh, where k is a constant. Thus, the summation
is a sum over particles b in the neighbourhood of xa , where ∇F(x) is to be evaluated. SPH is a
mesh-free method because interactions among particles depend only on their locations, and do not
require prescribed topological connections.

By applying Equation (1) to the Navier–Stokes equations, the standard SPH formulations given
below may be derived [4].
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D�a
Dt

=�a
∑
b

(ua−ub) ·∇Wab
mb

�b
(2)

Dua
Dt

=−∑
b
mb

(
pa
�2a

+ pb
�2b

+�ab+Rab fab

)
∇Wab (3)

Dea
Dt

= 1

2

∑
b
mb

(
pa
�2a

+ pb
�2b

)
(ua−ub) ·∇Wab (4)

Here p is pressure, u is velocity and e is internal energy. For the purposes of the present work,
a calorically perfect gas is assumed and the equation of state p=(�−1)�e is used, where � is
the specific heat ratio and e is set to zero at temperature T =0. The notation Wab denotes a
kernel function W (r,h) evaluated with r=xa−xb. Throughout this paper, the cubic spline kernel
of Monaghan and Lattanzio [5] is used for W , with compact support radius 2h. Because of the
symmetry of Equations (2)–(4) with respect to particle indices, and the symmetry of the kernel
function (such that ∇Wab=−∇Wba), each pairwise particle interaction exactly conserves mass,
momentum and energy.

Throughout this work, the basic SPH gradient estimate of Equation (1) is corrected using the
mixed gradient and kernel correction method of Bonet and Lok [6]. The basic SPH gradient oper-
ation does not exactly reproduce the gradient of a constant-valued function (i.e. it is not zero-order
consistent). Bonet and Lok have shown that their corrected gradient applied to a Shepard-corrected
kernel ensures first-order consistency and exact conservation of linear and angular momentum
(although it results in a loss of exact energy conservation). Consistency correction gives a marked
improvement in accuracy where the particle distribution is non-uniform or the particle support is
incomplete (i.e. the number of neighbour particles is low) [7]. This is the main motivation for use
of a correction in the present work, since incomplete support is unavoidable in SPH operations
near boundaries.

In the momentum equation, �ab is the viscous stress between particles a and b. For one-
dimensional and quasi-one-dimensional flow in the present work, we use the following artificial
viscosity formulation introduced by Monaghan and Gingold [8] to enable shock capturing:

�ab=
{

(−�cab�ab+��2
ab)/�ab if uab ·rab<0

0 otherwise
(5)

where �ab is defined by

�ab= huab ·rab
r2ab+�2

(6)

In the above, cab and �ab are averages over particles a and b of the speed of sound and density,
respectively, rab=rb−ra and uab=ub−ua . The constant coefficients � and � determine the
strength of the dissipation and the term �, defined as h/10, serves to prevent a singularity when
rab=0. For two-dimensional viscous flow applications, the viscous stress is approximated by the
following SPH/finite-difference combination, following Violeau and Issa [9]:

�ab= −8

�a+�b
�

(
1

�a
+ 1

�b

)
uab ·rab
r2ab+�2

(7)
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where � is the physical viscosity coefficient. Particles a and b exchange equal and opposite viscous
interparticle forces directed parallel to the displacement between the particles. Therefore, this
formulation conserves linear and angular momentum. These properties are discussed more fully
by Violeau and Issa [9] and Basa et al. [10].

The term Rab fab∇Wab is Monaghan’s interparticle force [11] defined by

fab= W (rab,h)

W (rab,h)
(8)

and

Rab=	

(
pa
�2a

+ pb
�2b

)
(9)

where rab is the local average interparticle spacing and 	 is a constant. This term acts as a small
short-range interparticle repulsive force and was introduced to suppress the tensile instability in
some applications. Since the ideal gas equation of state is used in the present work, pressure
is always positive and the tensile instability does not arise, according to the analysis of Swegle
et al. [12]. However, in application to separated flow (Section 6.2) particle voids may occur in the
wake of a bluff body, and we have found that the inclusion of Rab fab in the momentum equation
is effective in maintaining an adequate particle distribution.

3. CHARACTERISTIC THEORY FOR BOUNDARY CONDITIONS

The method of characteristics provides a rigorous analytical framework for the implementation
of boundary conditions in numerical methods [13, 14]. If the flow is normal to the boundary and
free of shock waves and significant viscous effects, it is governed by the one-dimensional Euler
equations for isentropic flow of a calorically perfect gas. (In practice, these conditions can often be
satisfied or approximated by suitable placement of the permeable computational boundaries.) It can
then be shown that three characteristic variables or Riemann invariants (J+, J− and entropy s) exist,
which are constant along curves in the x–t (space–time) plane defined by dx/dt=u+a,u−a,u
respectively, where a is the speed of sound. These curves can be interpreted as the trajectories of
sound waves and material particles that carry constant values of the characteristic variables. The
characteristic variables J+ and J− are given by J± =u±2a/(�−1).

This approach guides the numerical implementation of boundary conditions because it frames
the governing equations in terms of information propagation. For subsonic flow (u<a), there
are always two characteristic waves running downstream at velocities u and u+a, with one
characteristic carrying information upstream at u−a. Where flow enters the domain through an
inflow boundary, therefore, we should prescribe the downstream-running characteristics J+ and s
(based on knowledge of conditions outside the domain) and determine J− from the solution inside
the domain (in other words, allow the value of J− to propagate upstream to the boundary). Similarly,
at an outflow boundary, the method of characteristics suggests that J− should be prescribed (i.e.
determined from the exterior of the domain), while J+ and s should be transmitted from the
domain interior. (A similar analysis can be made for supersonic flow.)

In practice, however, it is difficult to implement characteristic-based boundary conditions rigor-
ously because J+, J− and s are rarely known, and their value outside the domain may not be
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independent of events inside the domain. Variables such as velocity, pressure and temperature, on
the other hand, often are known or can be measured for the physical flow that is to be modelled.
At a minimum, however, the method of characteristics determines the number of variables that
should be prescribed at the boundary (to propagate into the domain) and the number which should
be propagated from the domain interior to the boundary.

4. TREATMENT OF LAGRANGIAN PARTICLES AT EULERIAN BOUNDARIES

Since Lagrangian SPH particles are not constrained to the boundaries of an Eulerian (i.e. spatially
fixed) domain, new particles must be defined at inlets and removed at outlets, at a rate consistent
with the physical flow rate across each boundary. In this section, an algorithmic framework is
presented for this process. A schematic diagram of the implementation for inflow boundaries is
shown in Figure 1. The method as presented here requires that the boundary is planar and that
flow is normal to the boundary (in practice this can be achieved by placing the inlet boundary
far enough upstream of any flow features that may cause the flow to be non-unidirectional). The
inflow velocity may vary in time and/or space. It is also required that a compactly supported
kernel function is used in the underlying SPH method.

An inflow zone is defined outside the flow domain by extruding the inlet boundary in the
upstream direction. The length of the inflow zone in the flow direction is equal to or greater than
the support radius of the SPH kernel function. Every time a particle crosses from the inflow zone
to the fluid domain, a new particle is created at the upstream side of the inflow zone. This approach
maintains the required particle number density at the inflow boundary.

The updating of particle variables inside the inflow zone depends on the analytical boundary
condition to be applied. For subsonic flow, the method of characteristics suggests that two variables
must be prescribed while one is determined from the domain interior. An intuitive choice is
to prescribe velocity and temperature at the inflow boundary, leaving pressure or density to be

Figure 1. Schematic diagram of the inflow boundary zone. A new particle a is added when an existing
particle b crosses out of the inlet zone into the fluid domain.
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determined by information propagating upstream from the interior. (Prescription of temperature is
equivalent to prescription of internal energy in the present work, since a calorically perfect gas
is modelled.) To implement this boundary condition within this SPH framework, the velocity and
temperature are prescribed for every particle in the inflow zone. Pressure at inflow particles is then
determined by an SPH interpolation based only on information from neighbour particles that are
inside the domain. This amounts to an extrapolation from the interior domain into the boundary
zone. Since this extrapolation is carried out with incomplete and one-sided support, a standard SPH
interpolation would yield very poor results. For this purpose we use the reproducing kernel particle
method of Liu et al. [15], which gives first-order consistency in the boundary extrapolations.

Particles near the boundary, but inside the fluid domain, are updated according to usual SPH
procedures. Some inflow zone particles fall inside the compact support of near-boundary fluid
particles, and thus allow boundary information to be propagated into the domain.

The outflow zone, defined downstream of the fluid domain, is simpler to implement since no new
particles need to be created. In this zone, one variable is prescribed to represent the downstream
conditions. If velocity and temperature are prescribed at the inlet, as described above, then pressure
or density can be prescribed at the outlet. Extrapolation of the other two variables to the outlet
is effectively performed by convection of particles from the domain interior to the outflow zone.
The governing equations are still solved for these outflowing particles until they flow past the
downstream limit of the outlet zone and are eliminated from the simulation. Again, because SPH

Figure 2. Pressure distribution at various times in a simulation of an one-dimensional flow at M=0.1
with an initial perturbation in the pressure field. Velocity and temperature are prescribed at the inlet, x=0,

and pressure is prescribed at the outlet, x= L . Shaded bands denote the inflow and outflow zones.

Copyright q 2008 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2009; 61:709–724
DOI: 10.1002/fld



PERMEABLE AND NON-REFLECTING BOUNDARY CONDITIONS IN SPH 715

operations are performed on the outflow particles with incomplete support, at least zero-order
consistency is required.

These boundary conditions were tested for a simulation of one-dimensional compressible flow of
an ideal gas in the domain 0�x�L . Particles are distributed at an initial spacing of �xi/L=0.01,
with h/�xi =1.7. Artificial viscosity is used with �=0.1 and �=0 in Equation (5), and the artificial
repulsive force of Equation (8) is not used. Uniform pressure, velocity and temperature are set
as pi ,ui and Ti , respectively, in the initial condition. The initial Mach number Mi =ui/

√
�RTi

is 0.1. At the inlet (x=0) velocity and temperature are prescribed as ui and Ti using the method
described above, and at the outlet (x= L) the pressure is prescribed as pi . For this trivial problem,
the steady-state solution is equal to the initial conditions, and SPH successfully maintains the
solution. However, if the initial condition is perturbed by introducing a region where p(x)<pi ,
left- and right-running waves are expected. These waves must be transmitted out of the domain
before the uniform steady state can be reached. This is a more challenging test of the boundary
condition algorithm, and results are presented in Figure 2 for an initial perturbation equal to 20%
of the absolute background pressure pi . In the results, time is normalized with respect to L/ai ,
the time required for a sound wave to traverse the domain at the initial speed of sound, ai .

The results show that the algorithm successfully enforces the prescribed inlet and outlet condi-
tions. However, waves arriving at the boundaries around tai/L=0.5 are reflected back into the
domain, and they delay convergence towards steady state. This is non-physical behaviour, since
waves should propagate freely through the boundaries just as they propagate through the inte-
rior domain. In the example shown, the computation fails shortly after tai/L=1.016, with the
development of large particle voids near a boundary. However, the significance of this result is
that SPH can indeed simulate permeable boundaries defined at fixed Eulerian locations using the
framework of inflow and outflow zones described above. The accuracy and robustness of the
method can be improved by a more appropriate choice of analytical boundary condition, as shown
in the next section.

5. NON-REFLECTING BOUNDARY CONDITIONS

The problem of undesirable wave reflection at boundaries is well known. In principle, it can be
removed by a characteristic formulation of the boundary conditions, as discussed in Section 3.
However, it is difficult in practice to determine the appropriate boundary values of the exact
characteristics of the Euler equations. Giles [3] proposed alternative boundary conditions based
on a linearized set of governing equations, assuming that perturbations from a uniform, steady
reference flow are small near the boundaries. Giles derived the following set of characteristic
variables for the linearized equations:

J1=−a2(�−�ref)+(p− pref) (10)

J2=�a(u−uref)+(p− pref) (11)

J3=−�a(u−uref)+(p− pref) (12)

The subscript ref denotes the reference flow near the boundaries, which can be prescribed on
the basis of knowledge of the exterior domain. The first characteristic wave is associated with
convection of entropy and propagates at flow velocity. The second and third characteristics are
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waves that propagate upstream and downstream relative to the local flow. At an inflow boundary,
the downstream-running characteristics J1 and J2 should be prescribed as zero and the upstream-
running characteristic J3 should be determined from the domain interior. Similarly, at the outflow
boundary, J1 and J2 should be determined from the interior, while the boundary condition is J3=0.
By inverting the system of equations (10)–(12), it is straightforward to express pressure, density
and velocity as functions of the characteristic variables, as shown below.

�−�ref=
1

a2

(
−J1+ 1

2
J2+ 1

2
J3

)
(13)

u−uref= 1

2�a
(J2− J3) (14)

p− pref= 1
2 (J2+ J3) (15)

Figure 3. Pressure distribution at various times in a simulation of an one-dimensional flow at M=0.1,
with an initial perturbation in the pressure field. Non-reflecting inlet and outlet boundary conditions are

applied. Shaded bands denote the inflow and outflow zones.
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These equations are used to update �,u and p at the boundaries after the characteristics have
been determined. The reference values (about which the governing equations are linearized) must
be specified for all three variables at both boundaries. This is not equivalent to prescription of
�,u and p, since perturbations from the reference flow are allowed. The boundary conditions are
imposed on J1, J2 and J3 rather than �,u and p. The implementation of this analytical boundary
condition in SPH is straightforward within the framework described in Section 4.

The one-dimensional steady-flow test case was repeated with these non-reflecting boundary
conditions. Results are shown in Figure 3. Waves are attenuated significantly on reflection, in
comparison with the case shown in Figure 2. By dimensionless time tai/L=1.695, perturbation
from the steady state has decayed to less than 5% of its original value because waves have been
transmitted out through the boundaries.

6. APPLICATIONS

In this section, results are reported for flow simulations that make use of the inflow and outflow
boundary implementations. A quasi-one-dimensional nozzle simulation is used to demonstrate
subsonic and supersonic inflow and outflow. This is followed by simulations of steady and unsteady
two-dimensional flow around a cylinder.

6.1. Quasi-one-dimensional nozzle flow

In these test cases, an inviscid ideal gas flows through a duct of non-uniform cross-sectional
area, and all variables are assumed to be functions of x only, with negligible y and z velocity
components. Flow is governed by the quasi-one-dimensional Euler equations

�
�t

⎛
⎜⎜⎜⎜⎝

�A

�uA

�

(
e+ 1

2
u2
)
A

⎞
⎟⎟⎟⎟⎠+ �

�x

⎛
⎜⎜⎜⎜⎝

�uA

�u2A

�u

(
e+ 1

2
u2+ p/�

)
A

⎞
⎟⎟⎟⎟⎠+A

�
�x

⎛
⎜⎝
0

p

0

⎞
⎟⎠=0 (16)

where A= A(x) is the cross-sectional area of the duct. These equations can be discretized using
standard SPH methods. For steady isentropic flow, an exact solution is given by(

A

A∗

)2

= 1

M2

[
2

�+1

(
1+ �−1

2
M2
)]�+1/�−1

(17)

where M is the Mach number and A∗ is the critical area (at which M=1) [16].
The duct is a convergent–divergent nozzle with inlet area 2 (arbitrary units), throat area 1 and

outlet area 1.3. In this geometry, the outlet and inlet areas are different and the outlet and inlet
flow conditions are different. This entirely precludes the use of periodic boundaries, even as an
approximation to inflow and outflow boundaries. Inflow and outflow zones are used, as described
in Section 4. In the initial conditions, particles are distributed uniformly over the length L of the
domain at an initial spacing �xi/L=0.01, with smoothing length h=4/3�xi . Artificial viscosity
is used with �=1.5 and �=2.5, and there is no artificial repulsive force.

For the inlet with subsonic flow, total pressure p0 and total temperature T0 are prescribed for
all particles in the inflow zone, while static pressure p is extrapolated from the domain interior. At
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Figure 4. Area, Mach number and pressure ratio distributions in the quasi-one-dimensional nozzle with
subsonic inlet and subsonic outlet, computed with SPH and from an exact analytical solution.

the outlet, for subsonic flow, static pressure is prescribed while energy and velocity are determined
from the conservation equations. Final steady-state results for this case are shown in Figure 4. The
SPH solution is in excellent agreement with the analytical solution, with root mean square error
less than 1% in pressure and Mach number.

In supersonic flow, no characteristics propagate upstream. Thus, at a supersonic inlet, three
variables must be prescribed (total pressure p0, total temperature T0 and static pressure p in this
case). At a supersonic outlet, all variables are determined in the outflow zone by solution of the
discrete conservation equations, with the neighbour deficiency for the most downstream particles
effectively enforcing one-way propagation of information. Results are shown in Figure 5 for a
nozzle flow with entirely supersonic flow from inlet to outlet. (This is a purely theoretical scenario,
since the decelerating flow would contain oblique shocks in a physical nozzle. It is the quasi-one-
dimensional analytical model, rather than the numerical approximation, which fails to capture the
physics completely.) Again, there is very good agreement with the analytical result. Root mean
square errors are 3.2% and 0.8% for Mach number and pressure, respectively. These simple but
non-trivial test cases provide an effective preliminary validation of the new approach to modelling
inflow and outflow boundaries in SPH.

6.2. Two-dimensional flow over a cylinder at ReD =40

Two-dimensional flow over a cylinder is a classic fluid dynamics study, and an important test
for numerical methods. Lee et al. [17] simulated flow over a square cylinder using SPH, with
periodic boundaries upstream and downstream and a streamwise body force to overcome drag.
This arrangement represents the special case of a cylinder in an infinite array. Takeda et al. [18]
used SPH to model flow over a cylinder at Reynolds numbers from 6 to 55, but performed a
separate finite-difference simulation to provide boundary conditions for SPH. For a general model
of flow over a cylinder or any body immersed in a steady flow, true inflow and outflow boundaries
are required. To date there has been no complete SPH simulation of this case.
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The geometric definition of this problem is shown in Figure 6. Flow is from left to right as
shown in the diagram, with periodic boundaries used at the top and bottom. The solid cylinder is
modelled using fixed particles placed in concentric circles. Approximately 10 000 fluid particles
are used in the simulation, initially distributed in concentric circles near the cylinder and on a
Cartesian grid further away. The initial particle spacing �x is approximately (0.11)D and the
smoothing length is h=(0.22)D, where D is the cylinder diameter. The Mach number (based on
inlet reference velocity and temperature) is 0.1. The fluid is modelled using the mixed gradient
and kernel correction of Bonet and Lok [6] for first-order consistency, and Monaghan’s repulsive
force term defined in Equation (8) [11] with 	=0.05 to suppress particle voids. Viscous stresses
are modelled using Equation (7).
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Figure 5. Area, Mach number and pressure ratio distributions in the quasi-one-dimensional nozzle with
supersonic inlet and supersonic outlet, computed with SPH and from an exact analytical solution.

Figure 6. Domain geometry for the model of two-dimensional flow around a cylinder.
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Two simulations were carried out for a Reynolds number ReD of 40 (based on cylinder diameter
and inlet velocity). At this value of ReD , flow is expected to be laminar everywhere, with a pair
of steady, symmetric counter-rotating vortices in the wake. Unsteady vortex shedding occurs at
Reynolds numbers above about 45 [19]. In the first simulation, velocity and temperature were
simply prescribed at the inlet, and pressure was prescribed at the outlet. In the second, the non-
reflecting boundary conditions of Giles were applied at the inlet and outlet. In both cases, the
boundary conditions were imposed within the framework of inflow and outflow zones as described
in Section 4. Results for dimensionless pressure coefficient cp =(p(
)− p∞)/ 1

2�∞u2∞ over the
cylinder are shown in Figures 7 and 8 for the prescribed and non-reflecting boundary conditions,
respectively (where 
 is the polar angle about the centre of the cylinder). (The freestream conditions
p∞,�∞ and u∞ are taken as the inlet conditions for the purpose of computing cp.) Results shown
include time averages over 4000 steps (excluding a start-up period), with error bars indicating the
root-mean-square deviation over this period. Also shown are time averages over typical periods
of 50 time steps. For the case with non-reflecting boundary conditions, the pressure distribution is
in reasonable agreement with a prediction from the commercial finite volume software ANSYS-
CFX [20], although there is a marked discrepancy in the region of separated flow. Unsteadiness
is greatly reduced by the introduction of non-reflecting boundary conditions. The magnitude of
fluctuations in surface pressure (indicated by error bars) is reduced by a factor ranging from
1.7 to 8. The greater unsteadiness in the case with prescribed velocity, temperature and pressure
boundary conditions is due to waves that traverse the domain and are reflected at the inlet and outlet
boundaries. These waves occur in both simulations, but are heavily attenuated by the non-reflecting
boundary conditions.

Contour plots of velocity magnitude near the cylinder are shown in Figure 9 for the finite volume
and SPH simulations, respectively. Both results predict a steady, symmetric flow separation, and
the velocity distributions are in good agreement.
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Figure 7. Pressure coefficient on the cylinder surface at ReD =40, computed using SPH with prescribed
velocity, temperature and pressure boundary conditions. Results show time averages over 4000 time steps
and over various representative 50 step periods. Error bars show root-mean-square deviation about the

4000 step average. A finite volume solution is shown for comparison.
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Figure 8. Pressure coefficient on the cylinder surface at ReD =40, computed using SPH with non-reflecting
boundary conditions. Results show time averages over 4000 time steps and over various representative 50
step periods. Error bars show root-mean-square deviation about the 4000 step average. A finite volume

solution is shown for comparison.
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Figure 9. Contour plots of speed, normalized to inlet velocity, in flow around a cylinder at ReD =40 from
(a) an SPH solution with non-reflecting boundary conditions and (b) a finite volume solution.

6.3. Two-dimensional flow over a cylinder at ReD =100

Flow over a cylinder at a higher Reynolds number of 100 was simulated using the same SPH
methods described above with non-reflecting boundary conditions only. At this Reynolds number,
an unsteady von Kármán street is expected in the cylinder wake.

A particle spacing and smoothing length of approximately half the values used for ReD =40 were
found necessary in this case because of the thinner boundary and shear layers. Since this higher
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resolution is required only near the cylinder and centreline of the domain, particles were distributed
non-uniformly in the transverse (y) direction. The use of a first-order consistency-corrected SPH
formulation makes this possible, significantly reducing the error due to particle non-uniformity
[7]. The inflow boundary formulation used here automatically preserves the non-uniform particle
distribution through the run, since particles are introduced in the inflow zone at the same transverse
location where they cross into the interior domain. The non-uniform particle distribution reduced
the computational cost by a factor of about 3 relative to a uniform distribution.

The SPH simulation correctly predicts the existence of vortex shedding at this Reynolds
number, as shown in Figure 10. The non-uniform distribution of particles is also visible in these
visualizations. The SPH simulation predicts a Strouhal number of 0.18, which is in reasonable
agreement with the value of 0.165 measured consistently in various experiments [21]. It should be
noted that the simulated channel is narrow in comparison with classical studies of cylinder flow,
with width equal to 8 cylinder diameters, and this may have some influence on the results.

(a)

(b)

Figure 10. Flow around a cylinder at ReD =100, from an SPH solution with non-reflecting
boundary conditions. (a) Instantaneous contour plot of speed and (b) Instantaneous contour
plot of x material (Lagrangian) coordinates. Particles with similar shading had similar x

coordinates at the beginning of the simulation.
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7. DISCUSSION

In this paper, a novel framework has been presented for modelling inlet and outlet boundaries in
SPH. The method involves inflow and outflow zones outside the flow domain, in which appropriate
parameters are prescribed and the SPH equations are partially solved. This framework is flexible
enough to allow various analytical forms of inlet or outlet boundary condition to be imposed. In
particular, characteristic-based non-reflecting boundary conditions may be applied. Accurate results
have been obtained for one-dimensional and quasi-one-dimensional test cases. In two dimensions,
the inlet and outlet boundary conditions were used to model flow over a cylinder at Reynolds
numbers of 40 and 100, as a classic case of steady-flow rate through a fixed spatial domain.
Reasonably accurate results were obtained for pressure distribution, velocity fields and vortex
shedding frequency. Qualitative differences between the wake structures at two Reynolds numbers
were predicted correctly. The higher Reynolds number case also demonstrated the capability of
the method to deal with non-uniform particle distributions and an unsteady, non-uniform outlet
condition. These are the first complete SPH simulations of flow over a cylinder achieved without
the assumption of streamwise periodicity. The results demonstrate the method’s capability to model
steady and quasi-steady non-enclosed flows, including separated flow.

In principle, these boundary conditions may be extended to curved boundaries, non-uniform
boundary conditions (e.g. a prescribed velocity profile), unsteady boundary conditions and fully
incompressible flow. The only restriction is that the flow near the boundary should be uni-
directional, so that the one-dimensional approximation remains valid for flow along streamlines.
A non-reflecting formulation would not be necessary or applicable for fully incompressible flow,
since information is not propagated by acoustic waves. However, further invesitgation is required.
Implementation for free-surface flow (an important application area of SPH) is less obvious, since
the water depth at outflow must be prescribed. Another possible application of the technique is
to the coupling of SPH to a mesh-based method. With boundary conditions of the type presented
here, fully Lagrangian modelling of flow through fixed domains is possible, and the scope of SPH
is extended to a much broader range of engineering fluid dynamics applications.
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